On Contribution of Jainology to Indian Karma Structures

Prof. L. C. Jain & C. K. Jain

1. Introduction to the Contents

From the Sañkhyaãgama (c. 2nd century A. D.) and the Kasñayopãhu sa sutta (c. 1st century A. D.) Prakrit texts, Nemicandra (c. 11th century A. D.) compiled in abstract form the texts known as Gommañsâra and Labdhisâra respectively. The author has contributed three research papers regarding the contents of these volumes.1 The commentaries on the works of Nemicandra were prepared respectively by Keñavarpu (c. 14th century A. D.) Nemicandra (c. 16th century A. D.). Mâdhavacandra Traividyâ (c. 1203 A. D.) as well as Todaramala (c. 1761 A. D.), Abhayacandra Saidhânti (c. 13th century) is also known to have compiled a commentary.

The approach to the topics is set theoretic2 and methodology

(b) Mahãbandha, volumes 1-7, Bhãratiya Jãnapitha, Kashi, 1947-1958.

2. Cf. 2 (d)
3. Cf ibid.
4. Cf ibid.
5. ibid.
6. Cf. ibid.

परिसंबंध

Jain Education International
For Private & Personal Use Only
www.jainelibrary.org
symbolic. In the earlier portions of the texts, post universal Lokottara measures pramāṇa are set up in relation to the bios detailed with respect to individual control station guna sthānas. The next part of Gommaṭasāra (Karma-kāṇḍa) details about the theory of karmic bonds, rise and state in structural forms. The material in Labdhisāra deals with the dynamics of the karma system in an elaborate mathematical approach. The equation of motion of the complex system dealing with the nisusus (niṣekas) expressible as tatrads of (i) Configurations (prakṛtis) (ii) mass numbers (pradefs), (iii) energy-levels (anubhāga aṅśas) and (iv) life-time intervals (sthīti) pose the most trying problems of bio-science phenomena.

2. Structures in Karmic Masses

One may recall the treatment of an instant-effective-bond (Samaya-prabaddha) in a previous research paper. In order to understand the structure of a nisus, with life-time zero to prescribed instants, one has to give a general expression to the instant-effective-bond in terms of the configuration, the syeer-vector-group and the geometric regression. Let \(B^a_\beta \) denote the set of karma particles of \(C_{a\text{th}} \) configuration (\(\alpha = 1, 2, \ldots \)), of \(S^\beta_{\beta\text{th}} \) super-vector-group (\(\beta = 1, 2, \ldots \)) of karma particles

(b) Jain, L. C., System Theory in Jaina School of Mathematics, I. J. H. S., vol. 14 no. 1, 1979, pp 31–65

10. Cf. ibid.
11. Cf. 8 (c) and 9, op cit.
12. Cf. ibid.
13. Cf. 9 (a), op. cit., and Cf also 7, op. cit.
contained in γth geometric regression ($\gamma=1,2,\ldots$) of the instant-effective bond ($Samaya-prabaddha$) which varies in its contents of karma particles according to variations in $Yoga$ or volution and $kāśāya$ or affection. Thus not only B varies, but its subparts in C_{α} S_{β} and G_{γ} also have varied values, every instant. Let the vector groups contained in ($vargana$) be denoted by W_{V}^{I} where I denotes indivisible-corresponding-sections ($avibhāgi$ praticchedas) of affine or anti-affine energy-levels ($anubhoga$ $aṁśa$) of impartation controls in each of subscept V of vectors ($vargas$) contained in a particular vector group. Here I will represent the least value of I, *S_{α} will denote the total number of super-vector-groups ($spardhakas$) contained in a geometric regression ($guhatāni$) corresponding to $C_{\alpha k}$ configuration of karma, and d will denote the common difference through which the vectors go on decreasing at every next step, in the next nisus having an instant less of life time for a particular configuration.\footnote{14}

Thus,

$$
\begin{align*}
C_{\alpha} & = B_{S_{\beta}G_{\gamma}} \equiv W_{V}^{\beta i*S_{\alpha}^{\gamma}-1} \frac{(\beta - 1)i*S_{\alpha}^{\gamma}-1}{2^{\gamma-1}} + W_{V}^{i*S_{\alpha}^{\gamma}-1} \frac{1}{2^{\gamma-1}} \\
& - \left[\frac{(B - 1)i*S_{\alpha}^{\gamma}-1}{2^{\gamma-1}} + 1 \right] \frac{d}{2^{\gamma-1}} + \ldots + \frac{W_{V}^{2\beta i*S_{\alpha}^{\gamma}-1}}{2^{\gamma-1}} \frac{(\beta i*S_{\alpha}^{\gamma}-1)}{2^{\gamma-1}} - 1 \frac{d}{2^{\gamma-1}} \\
\end{align*}
$$

...(2.1)

This gives a general expression which may be further detailed as follows:

Thus the bond fluent of first super vector group of the first geometric regression of first configuration (so labelled) is

$$
B_{1}^{S_{\alpha}} = W_{V}^{S_{\alpha}+1} + W_{V}^{s+2} - d + W_{V}^{s+3} - 2d + \ldots + W_{V}^{2s-1} - (s-1)d ...(2.2)
$$

The bond fluent of second super-vector-group of the first geometric of first configuration is:

$$
B_{1}^{S_{\alpha}} = W_{V}^{2s} - sd + W_{V}^{2s+1} - (s+1)d + W_{V}^{2s+2} - (s+2)d + \ldots + W_{V}^{2s-1} - (2s-1)d\ldots(\cdot 3)
$$

\footnote{14. Cf. 9 (a).}
On Contribution of Jainology to Indian Karma Structures

The bond fluent of third super-vector-vector group of the first geometric regression of first configuration is:

$$B_{31}^{1} = W_{v - 2s + 1}^{3s} + W_{v - (2s + 1) d}^{3s + 1} + W_{v - (3s - 1) d}^{4s - 1}$$

etc., till v/2 - 1 number of particles are not obtained.

Thus the bond fluent of the nth super-vector-group of first geometric regression of the first configuration is

$$B_{n1}^{1} = W_{v - (n - 1) s + 1}^{ns} + W_{v - (n - 1) s + 1}^{ns + 1} + \ldots + W_{v - (n + 1) s - 1}^{(n + 1) s - 1}$$

The bond fluent of first super-vector group of second geometric regression of first configuration is

$$B_{12}^{1} = \frac{W}{v}^{(n + 1) s} + \frac{W}{v} - \frac{d}{2} \frac{v}{2} + \frac{W}{v} - \frac{(s - 1) d}{2}$$

Similarly

$$B_{22}^{1} = \frac{W}{v}^{(n + 2) s} + \frac{W}{v} - \frac{d}{2} \frac{v}{2} - \frac{(s + 1) d}{2}$$

And the bond fluent of nth super-vector group of the second geometric regression of first configuration is

$$B_{n2}^{1} = \frac{W}{v}^{2 n s} + \frac{W}{v} - \frac{d}{2} \frac{v}{2} [(n - 1) (s + 1)] \frac{d}{2} + \ldots +$$

$$W_{v - (n s - 1) \frac{d}{2}}^{2 n s + s - 1}$$

Similarly the bond fluent of first, second etc. super-vector groups of rth geometric regression of first configuration are given as follows:

$$B_{1r}^{1} = W_{v}^{(r - 1) n + 1} + W_{v - \frac{d}{2 r - 1}}^{(r - 1) n + 1} s + 1$$

$$+ \ldots + W_{v - (s - 1) \frac{d}{2 r - 1}}^{(r - 1) n + 1} s + s - 1$$

\[\text{रिसंभाव-४}\]
\[B_{2\gamma} = W_{(\gamma-1)n+2}^{s} \frac{v}{2^{\gamma-1}} - s \frac{d}{2^{\gamma-1}} + W_{(\gamma-1)(n+2)}^{s+1} \frac{v}{2^{\gamma-1}} - (s+1) \frac{d}{2^{\gamma-1}} + \ldots \]

\[B_{n\gamma} = W_{\gamma ns}^{v} \frac{v}{2^{\gamma-1}} - (n-1) \frac{d}{2^{\gamma-1}} + W_{\gamma ns+1}^{v} \frac{v}{2^{\gamma-1}} - (n-1) \frac{d}{2^{\gamma-1}} + \ldots \]

Similarly, the bond fluent, for second, third & upto one hundred forty eighth configuration may be depicted through \(W_{v}^{f} \) the B's. There will be difference in the values of \(r, d, v, s \), and they be shown as variables in manipulation of different configuration, but the structures for all configurations will be grouped as above matrices' summation. Thus in

\[B_{S_{\beta} G_{\gamma}}^{C_{\alpha}} \]

the second super-vector group of the third geometric regression of \(C_{\alpha} \) th configuration of karma will be given as under:

\[B_{S_{\beta} G_{\gamma}}^{C_{\alpha}} = W_{2i}^{2i S_{a}^{2}} \frac{v}{2^{\gamma}} - \frac{i}{2^{\gamma}} \frac{d}{2^{\gamma}} + W_{2i S_{a}^{2}+1}^{2i} \frac{v}{2^{\gamma}} - (\frac{i}{2^{\gamma}} + 1) \frac{d}{2^{\gamma}} + \ldots \]

\[+ W_{3i S_{a}^{2}-1}^{3i} \frac{v}{2^{\gamma}} - (\frac{2i S_{a}^{2}}{2^{\gamma}} - 1) \frac{d}{2^{\gamma}} \]

Where \(S_{a} \) will denote the total number of super-vector groups contained in a geometric regression \(G_{\gamma} \) corresponding to \(C_{\alpha} \) th configuration of karma as shown above.

The total number of \(W \)'s above will denote the numbers of instants in the set (set) of life-time stay of the karma bond corresponding to a particular configuration and this will be denoted by cardinal of the set \(\beta \) family, for a particular geometric regression.
On Contribution of Jainology to Indian Karma Structures

Thus the number of nisus, represented by $B^C_{\alpha S} G^\gamma_{\beta}$ will be $\beta \gamma$
for a particular configuration and for all configurations it will be $\beta \gamma - \alpha$, constituting a three dimensional matrix.

For an input of instant effective-bond B or due to charge of Yoga^{16}, B's say x B, say x B, shall also have the same total number of W's, i.e., $\beta \gamma \alpha$ although the other quantities will have an over all charge proportional to x. Let the product $\beta \gamma \alpha$ be denoted by γ. Then the charge in the y the nisus W$_y$ till it decays shall be

$$a_y \frac{d^\gamma W_y}{dt^\gamma} \text{ or } a_y Z_y \left(t\right).$$

Similarly change in the next will be $a_y Z_y t - 1 \left(t\right)$ and so on. In the and the total charge in the input column (in the karma life-time structure) in γ instants will be zero if it is time-invariant, that is if

$$a_y Z_y \left(t\right) + a_y Z_y t - 1 \left(t\right) + \cdots + + a_0 = 0 \quad \text{(2.13)}$$

Similar situation may arise for all state columns, but when there are changes, matters for solutions will become very complicated and require a computers technique in graphics of events for manipulation.

As the instant-effective-bond can be put as an input-values vectors column, the whole change may be denoted by dB/dt also, as an instant, of d(xB)/dt in special Yoga and Kafiya circumstances.

The geometric regressions could also be put in a matrix form. Thus the nth geometric regression of karmic matter separate from indivisible-corrresponding-sections could be written in the form

$$\begin{align*}
\frac{v}{2^n - 1} = (w - 1) \frac{d}{2^n - 1}, & \quad \frac{v}{2^n - 1} = (2w - 1) \frac{d}{2^n - 1}', \\
\frac{v}{2^n - 1} = (w - 1) \frac{d}{2^n - 1}, & \quad \frac{v}{2^n - 1} = (w - 1) \frac{d}{2^n - 1}', \\
\frac{v}{2^n - 1} = (w(s - 1)) \frac{d}{2^n - 1}', & \quad \frac{v}{2^n - 1} = (w - 1) \frac{d}{2^n - 1}', \\
\frac{v}{2^n - 1} = (w - 1) \frac{d}{2^n - 1} \cdots, & \quad \frac{v}{2^n - 1} = (w - 1) \frac{d}{2^n - 1} \cdots. \\
\end{align*} \quad \text{(2.14)}$$

15. Cf. 7, op. cit. 16. Cf. 9 (a)
when basic vectors in terms of the fractional multiples of V as elements, regressive with fractional multiple of basic vectors d as common difference, vector group (or simply vectors w as numbers of rows) and tensors s as number of columns starting from extreme right lowest corner represent n various geometric regressions.

Similarly, following matrices, have the same number w of rows and the number s of columns, as above, have i as a notation for indivisible-corresponding-sections, and represent the imparlation intensities associated with each basic vector of the corresponding elements of the above matrices according to the position in the rows & columns.

The nth geometric regression of the recoil \((anubhāga)\) intensity is given by

\[
\begin{bmatrix}
 nsi + (w - 1), & \ldots, & ((n - 1) s + 2) i + (w - 1), & ((n - 1) s + 1) i + (w - 1) \\
 nsi + 1, & \ldots, & ((n - 1) s + 2) i + 1, & ((n - 1) s + 1) i + 1 \\
 \vdots, & \ddots, & \vdots, & \vdots \\
 nsi, & \ldots, & (n - 1) s + 2 i, & (n - 1) s + 1 i \\
\end{bmatrix}\ldots(2.15)
\]

All the above matrices are in correspondence with a particular configurational structure in relation to karmic bonds etc. Further the equation (2.13) may be written as

\[
z(t) = Az(t)
\]

(2.16)

or

\[
\frac{d}{dt}\begin{bmatrix}
 z_1(t) \\
 z_2(t) \\
 \vdots \\
 z_y(t)
\end{bmatrix} = \begin{bmatrix}
 0 & 1 & 0 & 0 & \ldots & 0 \\
 0 & 0 & 1 & 0 & \ldots & 0 \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 0 & 0 & 0 & \ldots & 0 & \ldots \\
 -a_0 - a_1 - a_2 \ldots - a_{y-1} & 0 & 0 & \ldots & 0 & 0 \\
\end{bmatrix}\begin{bmatrix}
 z_1(t) \\
 z_2(t) \\
 \vdots \\
 z_y(t)
\end{bmatrix}\ldots(2.17)
\]

The solution of the above matric differential equation give

\[
z(t) = e^{At} z(0) = \phi(t) z(0)
\]

(2.18)

where \(z(0)\) is \(z(t)\) at \(t = 0\), and

\[
e^{At} = \phi(t)
\]

is called trancition matric which is a \(y \times y\) square matric by

\[
\phi(t) = \begin{bmatrix}
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 -a_0 - a_1 - a_2 \ldots - a_{y-1} & 0 & 0 & \ldots & 0 & 0 \\
\end{bmatrix}\ldots(2.19)
\]
On Contribution of Jainology to Indian Karma Structures

Mark that e^{At} could also be expanded in the form of a uniformly convergent series

$$e^{At} = I + At + \ldots + \frac{A^n t^n}{n!} + \ldots$$ \hspace{1cm} (2.20)

subject to the condition

$$\frac{|| A^n t^n ||}{n!} \leq || A ||^n \cdot |t|^n$$ \hspace{1cm} (2.21)

Thus the instant-effective-bond comes as an input wave group, goes as an output-wave group, and what stays is the statewave group, in bond, in tensorial forms as above. A more elaborate form of derivation of the differential equation & its solution may be sought, by assuming the form of a variable nusus in the triangular matrix for state-transition phenomera. We may also represent the input wave or output wave group as ψ in place of $B_{\alpha \beta}^{C \gamma} G$ with the matrix form as detailed above, as a wave tensorial function of $Yoga$ and $kasīya$ as well as time. If $Yoga$ and $Kasīya$ are kept constant, the wave function may be said to Satisfy

$$\phi_1 (v, \psi) \bigtriangledown^2 \psi + \phi_2 (v, i) \psi = \phi_3 (v, i) \frac{\partial \psi}{\partial t} \ldots$$ \hspace{1cm} (2.22)

ϕ_1, ϕ_2, ϕ_3 could also be constants in tensorial form for certain fixed values of V and i; the threshold creator quanta of karmic matter mass & its intensity of recoil energy. The karmic wave contains mass and energy in subtle forms as above. We know that the configuration will take the shape of waves, for according to Jaina school an ultimate particle, at on instant, by virtue of velocity could be present at more than one point in space. In any configuration it has a momentum and energy of recoil. Thus the solution of the above wave equation shall have a more complicated form, in exponential than as that anticipated in (2.18), its coefficients being calculated from the elements of the the state-triangular matrix.

The ψ may be regarded as a guṇahāni spardhaka or a sum of vārgaṇās. Thus the ψ waves here may also be regarded as sum of wavelets in form of Set of vārgaṇās, etc. or also in form of set of niṣekas, which drops out ultimately after its life time, giving out unpulses. Thus the samaya

रति
prabaddha wave can be very properly given in terms of the multiple periodic waves, having their different periods of use as well as decay, depending upon various operators, known as (i) time (ii) Yoga (iii) Kasāya (iv) adhah pravrītta karaṇa (low tended activity) (v) apūrva karaṇa (invariant activity) and so on. Thus the manipulation of the karma system could be effected either through matrix mechanics (triangular state matrix, column input matrix, row output matrix) for different configuration, as well as through wave mechanics, with the help of differential equations comprising of various operators, operands and transforms. The remaining study is left for future, after a deeper probe in the search for the appropriate modern tools of mathematics.

3. Structures in Phases of Bios

The bios remains in the phases of Yoga upto the thirteenth control station (guṇasthāna), after which it is free Yoga. The phase of kāṣāya remain up to the kṣīnakaśāya or twelfth control station. The descripion of Yoga and kāṣāya structures have been detailed in a previous paper on system theory (System Theory) in Jaina School of Mathematics.

In this paper a survey of the above is given. The operational Yoga stations are of three types (1) upapāda (2) ekānta vrddhi (3) parināma. All the Yoga stations are innumerate part of the Jagatareṇi (set of points in a world line.) Every station of Yoga is classified into five subtypes of structures responsible for configuration (Prakrti) and point (particle)- (pradesa) bonds : 1) varga 2) vṛgaṇā 3) spardhaka 4) guṇāhāni 5) avishāga- praticcheda. They may be called basic vector, vector-group, supervector-group, geometric regression and indivisible-corresponding-section respectively. They have the same structure as the karmic matters, as shown previously; showing group equivalence and harmony in vibration, motion or intensity of recoil.

Now these phases are worthy of attention, which are the cause of perturbations or modification in the state matrix. First the details of the low-tended activity (adhah pravrītta karaṇa) are taken up. The

19. (a) Cf. 1 (d), Gommapasāra, Jivakāṇḍa, VV. 48–57.
(b) Cf. 1 (d), Gommapasāra, Karmakāṇḍa, VV. 896–912
(c) Cf. 1 (d) Labdhisāra, VV. 33–165, & c.
On Contribution of Jainology to Indian Karma Structures

period is Inter-muhūrta (*) (numerate āvalis: set of instants ranging from an instant greater than āvali to fortyeight minutes less two instants. Bhinna muhūrta is a mūhūrta less an instant. The number of pariṇāmas is innumerate universes (set of points), with similar increment, in flow of time. This activity may be for annihilation-sameliness (kṣāyika-samyaktva, for parting with endless-bonding of affection (anantānu bandhi Kaśāya), for subsidence or annihilation of mixed or disposition delusion (deśa or sakalacāritra). The bonding of lifetime is also altered proportionately, in ratio of innumerate part of Pālya, decreasing in every section of time-interval of Inter-muhūrtas. This results in infinite-times purity, bonding of infinite times of graceful recoil intensity bonding of infinitesimal part of ungraceful recoil intensity, and numerate thousand terms reduction in life-time bonding. The protract (anukṛiti) structure of the pariṇāmas (resulting phases) is calculated as follows:20

The progression is arithmetical and the following formulas are applied in manipulation.

SARVADHĀNA is the sum, gaccha is number of

(*) Cf. Dhaivalā 3/1,2,6/67/6. Cf, also 3/1,2,6/69/5 for approximate Muhūrta, which may be greater than a muhūrta, and may also be called antarmuhūrta.

Terms, ādi is the first term, caya is the common difference. The form in which the formulas appear are:

\[
\frac{\text{Sarvadhana}}{\text{śrēdhīyoga}} \cdot \frac{\text{gaccha}}{2} [2 (\text{ādi}) + (\text{gaccha} - 1) \text{caya}]
\]

\[
\text{caya} = \frac{\text{śrēdhīyoga} - (\text{gaccha}) (\text{ādi})}{((\text{gaccha})^2 - \text{gaccha})} (\text{approximately}) \text{ there, Saṃkhyāta is to be solved for by the method of indeterminate analysis)}
\]

\[
\text{caya dhana} = [\text{sarvadhana} - (\text{gaccha} (\text{ādi}))]
\]

\[
\text{ādi} = \frac{\text{sarvadhāna} - \text{cayadhana}}{\text{gaccha}}
\]

\[
\text{ādi dhana} = \text{sarvadhana} - \text{cayadhana}
\]

\[
= \text{ādi} \times \text{gaccha}
\]

20. Cf. 19 (a), op. cit.
For illustrating the general and protract structures the following working symbolism is adopted:

\[Jaga\text{\textperiodcentered} \, \text{reni} \, (\text{world-line}) \quad L \]
\[Asam\text{\textperiodcentered} \, \text{khy\textperiodcentered} \, \text{ata} \, (\text{innumerate}) \quad d \]
\[Sam\text{\textperiodcentered} \, \text{khy\textperiodcentered} \, \text{ata} \, (\text{numerate}) \quad s \]
\[Avati \, (\text{tail}) \quad R \]

For the general structure, the following data is available:

Number of terms \(R^{sss} \)

Common differences \[L^8 \quad d \]

Sum of common differences \((caya \, dhana) \)
\[\frac{L^8 \, d \, (R^{sss} - 1)}{(R^{sss}) \, s \, (2)} \]

Sum of first term \((adidhana) \)
\[\frac{L^8 \, d \, [1 + R^{ssss} \, (2s - 1)]}{(R^{ssss}) \, (s) \, (2)} \]

Quantum of \(Parin\text{\textperiodcentered} \, \text{amas} \)
at first instant \[\frac{L^8 \, d \, [1 + R^{ssss} \, (2s - 1)]}{(R^{ssss}) \, (R^{ssss}) \, (s) \, (2)} \]

Quantum of \(Parin\text{\textperiodcentered} \, \text{amas} \)
at last instant \[\frac{L^9 \, d \, R^{ssss} \, (2s + 1) - 1}{(R^{ssss}) \, (R^{ssss}) \, (s) \, (2)} \]

It is understood at present that these values could be obtained through indeterminate analysis, for the formulas form linear equations in more than one unknown, the solutions being in positive integers alone. The method has been discussed by Mah\text{\textperiodcentered} \, v\text{\textperiodcentered} \, irr\text{\textperiodcentered} \, \text{carya in GS. S. (miscellaneous treatment) chaper on various bypes of} \, ku\text{\textperiodcentered} \, ji\text{\textperiodcentered} \, ka\text{\textperiodcentered} \, a\text{\textperiodcentered} \, ras \, (indeterminate analysis) (6.79 \frac{1}{2} \, et \, seq.)

Data for the protract structure is as follows:

Common difference \[L^9 \quad a \]

Sum of common differences \((caya \, dhana) \)
\[\frac{L^9 \, a \, (R^{ssss} - 1)}{(R^{ssss}) \, (R^{ssss}) \, (s) \, (s) \, (R^{ss})} \]

Difference of \(sarvadhana \) and \(cayadhana \)
\[\frac{L^9 \, a \, [2 + R^{ssss} \, \{s \, (2s - 1) - 1\}]}{(R^{ssss}) \, (R^{ssss}) \, (s) \, (2)} \]

First portion in relation to first instant
\[\frac{L^9 \, a \, [2 + R^{ssss} \, \{s \, (2s - 1) - 1\}]}{(R^{ssss}) \, (R^{ssss}) \, (s) \, R^{ssss} \, (s)} \]

Last portion in relation to first instant
\[\frac{L^9 \, a \, [R^{ssss} \, \{s \, (2s - 1) + 1\}]}{(R^{ssss}) \, (R^{ssss}) \, (s) \, (R^{ss}) \, (2)} \]
On Contribution of Jainology to Indian Karma Structures

Whole quantum of parināmas in relation to last instant

\[L^3 a \frac{Rss (2s+1) - 1}{(Rss)(Rss)(s)(2)} \]

First portion in relation to last instant

\[L^3 a \frac{Rss \{s(2s+1) - 1\}}{(Rss)(Rss)(s)(2)(Rss)} \]

Last portion in relation to last instant

\[L^3 a \frac{Rss \{s(2s+1)+1\} - 2}{(Rss)(Rss)(s)(2)(Rss)} \]

The minimum protract portion in relation to first instant is

\[L^3 a : Rss \{s(2s - 1) - 1\} - 2 \]

\[\frac{(Rss)(Rss)(s)(2)(Rss)}{F^2 s} \]

or \[\frac{L^3 a}{F^2 s} \] where \(F \) is Finger (aṅgula) set of points

In the above Parinamas there is six-station set:

\[L^3 a \]

\[\frac{F^2 s}{a} (\frac{F+1}{a}, \frac{F+1}{a}, \frac{F+1}{a}, \frac{F+1}{a}, \frac{F+1}{a}) \]

The structure for the unprecedent activity is similar, but without protract structure. There is the structure for the invariant activity.\(^{(21)}\)

It is not understood, how the mathematical correlation has been set up between the structures of the state karmic matrix and the above activity structures. The simultaneity of phases of bios and karmic matter without a difference of even an instant is also not explainable in the similar way as is the indivisibility of an instant during the motion of a particle or bios.
